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SIGNAL PROCESSINC FILTERS UNDER
MODELING UNCERTAINTIES

Saleem A. Kassaw, Tong Leong tim and Leot~~~d J. Cimini

ABSTRACT

Matched and Wiener filters are considered for signal processing applications

when the a ptLofl.4 information about signal and noise characteristics are not

completely specified. The approach is to design filters which are saddle—point

or max—win solutions for the criterion functional (mean—squared—error or signal—

to—noise ratio) over the classes of allowable signal shapes and signal and

noise spectral densities. Two—dimensional discrete—parameter processes are

considered, and some numerical examples are presented. r

I. INTRODUCTION

Classical formulations of signal processing problems assume that the

characteristics of signals and noise can be modeled exactly, either deter—

ministically or statistically. For example , if the shape of a deterministic

signal is known and the noise additively corrupting it has a known power spectral

density (PSD), then a filter maximizing the signal—to—noise ratio (SNR) at

its output can be designed; this results in the well—known matched filter.

In the same way, the optimum Wiener filter can be obtained for the best linear

estimate of a random signal in additive noise, when both PSD’s are known.
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In many applications it La much more reas3nable to assume that the signal

and noise characteristics are nct completely known, and to assume that they

can only be defined as belonging to appropriate classes of characteristics.

The sizes of these classes reflect the degrees of uncertainty that one has

about the true signal and noise characteristics. In such cases, it is desirable

to have filters which perform well over both classes of allowable signal and

noise characteristics , that is, we should look for robust filters .

In general the specification of an optimum filter for processing inputs

requires knowledge of the multivartate prot~ability distribution functions

characterizing the input random processes. For estimation and detection ap—

plic.tions under the widespread assumption of C~ussian input processes the

optimum filters are generally linear , and are baced on the bivariate density

functions, that is, the mean and covariance functions, of the input Gaussian

process. Even if the input processes are not Gaussian . a restrtctio,~ to linear - :

filtering , as in Wiener and matched filtering, allows optimum filters to be

obtained if mean and covariance function information is available . In this

paper we will be dealing with cases of linear filtering where this bivartate

information is imprecise. Other efforts in robustness theory have been con-

cerned with the deviations from Gaussian distributions which may occur in

input processes. Allowances for distribution.’U impreciseness have led to many

interesting results on robust nonlinear structures in detection and estimation

theory (e.g., 1—5); however, such results deal almost exclusively with uni—

variate density functions and hence “white” inputs because of the major

analytical difficulties which otherwise appear.

One of the earliest investigations of robust linear filtering ideas was

reported by Yovits and Jackson in 1955 (61. They considered a game—theoretic

problem of max—win filter design for signal estimation in additive noise with

sean—squared—error as the pay—off functional, the signal having constraints on
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its mean-s~~are derivatives. Although the realizable Wiener filter was con-

sidered, only for the white—noise case was it possible to obtain explicit re-

sults. In [7) and (8) Nahi and Weiss obtained “bounding filters” for the

Wiener and Kalma n filter , which were possibly lower—order filters with

guaranteed error performance for classes of input characteristics. More re-

cently, Kuznetsov (9) obtained the saddle—point matched filter for the SNR

criterion; specifically, with the Fourier transform S(w) of a finite energy

signal allowed to be a member of a class C~. and for the noise spectral density

N(w) allowed to be a member of a class C , the saddle—point solutions were ob-

tained for the game with pay—off SNR(S,N;H). Hert SNR(S,N;H) is the SNR obtained

when filter H is used for signal and noise characteristics S(u~), N(ui), respet-tively .

Kuznetsov obtained separately the robust filter for S(w) in C5 with N(w) known, and

for S(w) known andN (u) in C .  The class C was the class of finite—energy signals

which are within an allowable distance .\ ~ 0 of a nominal S0(u) characteristic , in

the sense of I. distance. The class C was the “band—model” class of the spectral2 n

densities bounded by given densities N
~
(u) 

~ 
Nu (w) ,  with a total—power constraint .

In [101, Kassam and tim obtained the structures of robust ’ (saddle—point )

filters for the Wiener filter formulation , with both signal and noise spectral

densities allowed to be members of classes of densities specified by “band—models”.

In (11], Poor generalizes some resu lts cii Wiener filters obtained in [10).

Here we will obtain the robust matched and Wiener filters for two—dimensional

discrete—parameter systems subject to uncertainties simultaneously about signal

and noise characteristics. Thus this work represents a logical extension of the

recent results in (9—111.

I I .  ROBUST MATCHED FILTERES p

Lit .(s,n) be a real, finite—energy , two—dimensional , deterministic signal
0

sequence , whir. m,n are integer variables , and let S(u ,v) be the two—dimensional 0

discrete—tim . Fourier transform of s(m,n). If N(u,v) is the PSD of a teal, stat ion—

osrrn6~uMN/AY*L*eIU1Y ~NS
~~i 
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sty, zero—mean, additive noise, then the matched filter with frequency response

Ht(u,v) — S *(u, v ) I N ( u ,v)  ( 1)

maximizes the SNR at its output at rn—O , n—O . If an arbitrary filter H(u,v) is

used , the SNR f unct ional is

• SNR(S,N;H) - Q••)
2J,•

f : _ (2)

In (2) and the rest of this paper , except where indicated otherwise , every double

integral is over the region (u ,vI—tt <u,v~n). In the following , we w i l l  drop the

arguments of the functions wherever no confusion results.

Consider the following models for the classes of allowable signal and noise

characteristics:

C5 
— {S(u,v) (~~)2JJ~~S~~

2 dudv ~5) , (3)

C — (N(u,v) Nt(u,v)�N(u,v)~
N
~
(u,v) and (.! )2ffN(u ,v) dudv - (4)

In the defjnjtj~n of C , S0(u,v) is a nominal signal characteristic , and signals

in C~ differ in energy from the nominal signal s0(m ,n) by no more than 5. To

exclude a t r iv ial case , we assume that  the energy l~~js 0 (m ,n ) I ~~~~. The class C5
is a reasonable model for the allowable signal when it is known that  s(m ,n) is

within a neigborhood of s0 (m ,n) .  The class C~ of noise PSO’s contains PSD’s

with a specific total power 0~ which lie between given upper and lower bounds .

Such a model is appropriate, for example, when N(u,v) is estimated from samples.

In th. definition of ~~ we assume that Nt(u,v) t~ bounded .

The robust matched f i l ter  HR (u ,v) is defined to be the max—win filter such

that mix sin $NR(S ,N;H ) — win SNR(S ,N; H R )
H SeC SeCS I (5)

~CC NeC

L - - _ _ _  
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If is the optimum filter for a least—favorable pair of characteristics S~cC5.

then we would have

SNR(S ,N;H
9
) 
~ 

SNR(S R, NR ;HR) ~ SNR(S~ ,N~ ;H) (6)

for any pair (S ,N) in C X C  and any linear filter H, and (5) would be satisfied .

In this case, the filter H—H.~ and the pair (SR,NR)CC
XC will form a saddle—point

for the SNR functional of (2).

The main result of this section is the following theorem , which gives the

saddle—point solution for our matched filtering problem:

Theorem 1. For the classes C5 and ~~~ the robust matched filter H~ is the optimum

filter for the pair of least favorable characteristics defined by

S (u,v)N (u,v)

R N~(u~v) + c

and

Nu(u,
v) , (u,v)cRd(k)

— Nt(u,v) , (u,v)cRt(k) 
‘

tSR(u,v)(/k , (u,v)CRM(k) (8)

wh re

R,,~(k) — {(u,v)lkNu 
< 1S~ 1) , (9)

R,L(k) — {(u,v)I(SR( ~ 
kNL
} , (10)

— ((u,v) I~L ~ I S 11~ ~ 
kNu

} ~ (11)

if non—negative constants k,c exist satisfying

~ rftSoI dudv iS , (12)
(2*)T

and
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JJN~,dudv + JJNU
dUdV + 

~ 
- (21T)2a~ (13)

v.,~(k) R,
~
(k) R.d(k)

We omit the detailed proof of the theoren, since it is somewhat lengthy. However,

some clarifying comoents can be made, and an outline of the proof follows.

The structure of the solution is suggested by the results given in (9,10).

Eq. (12) results from conditions imposed in defining C5, and (13) is the power

constraint for the class C~. Note that (1)  and (8) are coupled, but that SR

and HR can be expressed in terms of the known S0, N~, and and constants k

and c , which can be solved f ro m two simultaneous equations derived from (12)

and (13). The proof shows when such a solution for k and c will exist. The

saddle—point condition (6) can be verified by noting that HR is optimum for

SR and M
R 
[one part of (6)), and by shoving that (Sg,HR) minimizes the numerator

in (2) over all (S,HR) with SCC , 

~
Ma’HR~ 

maximizes the denominator in (2) over

all the (N,HR) with NcC~.

For the case where either 5 0  or Mt — N
~ 

the above results become somewhat

simpler. Theorem 1 also gives, as a special case, the robust Eilter for a dif—

ferent model, the c—model (10), for N(u,v). We will consider this model in a

simple example in the next section.
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Outline of Proof of Theorem 1

Since HR 
is the optimum filter for the pair (Sg,NR), 

we have to show only tha t

SMR(S,N;HR) ~ 
SNR(SR,NR ;HR) for all (S,N) in CX C .

Consider the denominator term in (2), and call it d(N,H). Now

d(N,HR
)_d(Ng.HR)~

k2 k)
(N_N

R)+R k ) (N_N
L)lHR I

2+R~J(k)O~
_N
U)IHR

I2 (14)

On ~~
(k) , ‘HR

2 
~ k

2 and on ~~(k), I~~I~ � k
2; thus using the power constraint, we

f ind d(N ,HR)_ d(NR, KR) ~ 0.

In showing that the numerator term in (2) is minimized for SS~ given that

we note that II(S8S/(NR+c)l is non—negative , and we consider the minimization

of ht(S
~
(S_S

o
) / ( N a+c)). This last term is real, 

so we consider

ffI
SoIlS_ Sol/(NR

4C)lcostars S~(S—S0)Jdudv

This term is a minimum when the cosine part is —1, and the result of (7) for the

minimizing S can be obtained from Schwarz’s inequality.

In order to show when the solution given by (7) and (8) exists, that is,

when non—negative constants c and k exist which are solutions to (12) and (13).

we rewrite Eqs. (12) and (13) as

cc ii If I s ’
+ Ru(k, c) Mu + H~ (k ,c)~~~~~~~~

c) — (21r)2a~ (15)

and

~~~~~~~~~ 
+C

~~~(k c) (N u~~ i2~~~ jl~(k ,c)
k a (2v)26 (16)

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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where R~(k) of Eq. (10) has been written explicitl y as

LL (k ,c) • {(u,v) 
~
ISOIN L ~ ~~~

(N
~~~
)) , (17)

and similarly

R.~(k ,c) — ((u ,v)IkNU(N.d+c) < l S 0 I~1~ and Nt 0) . (18)

Ld
(k ,c) — R

t
(k ,c) fl R,d(k,c) (19)

Suppose the condition

JJI so
I 2 dudv < (21T )~~S < J’f jS0

I2 dudv + fflS0
I2 dudv (20)

Nt~
O

Nu<~
ID

is satisfied. This will be true in many models of interest; it is valid , for

example, when Nt and N~ 
are finite and non—zero when is positive. Then

there exists a finite, positive solution c c 1 in Eq. (12) with Nt replacing

NE, and the r e exists also a finite, positive solution c c 2~c1 in the equation

1 5 1 2
I f I S 0 I 2 dudv + c2 11(N~~j Z~

’2 dudv — (2,1)245 (21)

If the set {(u ,v)
f

(Nu
_N

~
)N

~ t S o I~~
0} has positive measure, then c2”c1. Otherwise,

c2—c1.

Consider Eq. (16). Let kk,(c) be the solution for k with cc(c1,c21. For

c—c1, we define k ( c 1) as the ess sup over the set {(u,v)INtIS0j
~
0) of 1S01 1(Nt+v i).

and for c c 2 we define k 5 (c 2 ) similarly as the ess in!, over t he same set , of

The solution k8(c) is a smooth, non-increasing function of c on

(c 1, c2 ) .
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Suppose the condition

(2w)~o~ < iIN tdUdV + IIN udUd ’~’ (22)

1501—0 (S0~N~>O

is satisfied. This is also generally true. Then the solution k..k~(c) with c€(c 1.c ,)

for Eq. (15) exists, and we have k5
(c~) k~,,(c2) ~ 

k~(c1
) .

~ k5(c1). (Note that

(22) is not compatible with c1 cfO. given tl~at ffNtdudv (2~)~~ ~
- fjNududv).

The solution k~(c) is also a smooth, non—increasing function of c on [c 1,c,). Thus.

positive solutions k.c always exist, when (20) and (22) are satisfied , for the

simultaneous equations (12) and (13).

If (20) is true but (22) is not , we may pick Ng N.a when !solN~
’
~
0, Ng O

when Nt O and 1s0 1>o , and NR arbitrary otherwise , with SR as in Eq. (7)  and c c 2.

Similar special cases can be considered when (20) is not satisfied , for example when

M.d is unbounded everywhere.

If the set {(u,v)l (N~
_N
t)N tIS0h0} has measure zero (for example, N~~Nu

) and

6>0 we take c c 1 c2 (assuming the LHS inequality in (20) is valid , otherwise the

solution is trivial)and Ng.Nt when ls 0l~o, arbitrary otherwise. If 5 0  and

has positive measure, we can set c—0 and take kk n(O)

the finite, positive solution of Eq. (15), assuming i,22) is true (otherwise

the solution is trivial). We will consider another special case in the next

section.

III. A NUMERICAL EXAI1PLE

We will now consider a simple specific model for the signal and noise character—

istics and den y. some numerical results. Consider the case where N(u.v) and S(u,v)

are circularly symeetnic, so that we may express N(u,v) as N(r) and S(u,v) as

5(r) where r — ,~u
5+ yZ We define a particular nominal signal Fourier transform

by
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J4.O ,O~~~r~~~2.S
S0(r) — 

0 , r > 2.5 (23)

In our first example, we will assume tha t we have precise information about the

noise,

N(r) — N0(r)

= N
~
(r) 

L
~~
N,d(r)

2.5—n, 0 ~ r ~ 2.5
— (24) 1

0 , r>2 .5

If we take 6—0.55, which represents an uncertainity of about 1Z of the total

signal energy, we can easily solve for the value c—0.l. Thus we have

4.O(2.5 r) 
, 0~~~r~~~2.5 t

SR (r) — (25)
0 , r> 2.5

and the robust filter is

1 4.0
) 2.6—r ‘ — —

HR(r) — (26)
0 , r > 2 . 5

The effect of the iS—uncertainity in the signal definition thus prescribes a filter

designed on the assumption of an added white—noise component of level 0.1 for

the noise spectrum. This white—noise components results in a non—singular signal

detection solution, whereas the “optimum” filter H0 designed for the nominal

signal S0 and noise N results in a theoretically infinite SNR (S0,N;110). However,

if H0 -is used when S~S0, we could get very different results. For example, it

turns out that SNR(SR,N;RO) — — dl, but with RE 
we get SNR(SR,M ;HR) - 10 dl ,

4’ 

- - .~~~~~— — — —— - —  

_ _ _ _ _ _ _ _
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which forms the lower bound for performance. When H.,~ is used and the nominal

signal is in effect, we get SNR(S0,N:HR) — 14 dl.

To extend this example , let us introduce distinct upper and lover bounds for

N:

N.L
(r) — (1—c) N0(r) (27)

N.
~
(r) — , (28)

with t— 0.1 and noise variance assumed known to be the variance of N0(r), the

“nominal” noise spectrum. This model may be interpreted as exoressing a 90~

contH.nce in the validity of ?40(r) for the noise spectrum , with an arbitrary

noise component allowed otherwise. In order to obtain SR and N~. c—c 1 wa~ first

found as the solution of Eq. (12) with Mt replacing MR. The correct c has to be

larger than this. The solution k’k (c) for c -‘ c
1 in Eq. (16) was then computed

numerically. Similarly, the solution k~k~(c) for c > c1 was computed numericall y

for Eq. (15). The intersection of these two results gave the value of c—O .~ 3 and

k—5.9. These results give

0.9(2.5—r) , 0 ~ r ~ 2.0

NR(r) — 0.45 , 2.0 < r ~ 2.5 (29)

0 , r > 2.5

and

3.6(2.5—n) 2 00.9(2.5—n) + 0.23 — r —

— 2.65 , 2.0 < r ~ 2.5 . (30)

0 , r> 2. 5

so that

1;
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I 2.;—o.9r , 0 r 2.0

a 5,9 , 2.0 < r ~ 2.5 (31)

0 , r>2.5

Figure 1 shows a sketch of these functions. Numerical values for SNR ’s can also be

computed for this case of signal and noise uncertainity; the robust filter lower

bound on SNR will now be somewhat less than 10 dl, because of the additional

noise uncertatnity. 
-

_____ —~~~~~~-~— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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IV, )IOT)I~~T WIENI’R F .1’i’R1~
Let S(u ,v) now be the PSi) “f a real , wi de—s en se stattcmatv t andom signa l

observ ed as a mixtur e w it h  real,  wi d e— s~nsp s ta tionary , ze ro—mea n , add~~ Lye

nois, with  PSD N ( u ,v) . it is vell—knowu that the optimum i1n,a~ ft ~~~~ gtvtng

the minimum mean—squared-error (NSt~) estimate ~‘t the s ign al  is given t’~

v) — 
S(u~ v) 

, ( 3 2 ’)
S(u,v)4-N(u ,v)

without reallsabilttv constraints.

In general , ii an arbitrary f i l t e r  H (u , v ’) is used, the M$~ is gtv.i~ by

.(S,N; H ) — ~~~~~~~~ I 1—Ht 1~t , v’) I ~ - N (u,v’) lu c u ,~’’) I I ~tudv ~

and the minimum 1ISE hq Riven hr

.t (S,N) - e ( S ,N ; H t)  - ) J J ~~~~~~-~-~ -— .i~’.tv (34~

We would like to consider a method ( .si d e s i gn in g  the estima t tug liltet - U , .v\

when the PSU’ a of the a tgnal and noise l’r,~4’4’aaea are not 
)p,’Iap t ~ kn ,~wu.  The

approach which w i l t  be followe d La * dire~ t estenston of the one—dimensional

case given in 1101.

We now assume that both the signal  and flt ’ I so PEP’ a he 1 ong o — I owc~

bounded classes of the form of ~4) . l’hua we now have the at 1,’vahle sIgu.~l anti

not.. PS1)’s to he members of classes I) and P defIned hr

and 

• (S(u ,v) (51(u,v) S(u,v) : S~ (u~ v~ and ~~~‘) 
1
fl E t t ~.~- ’) tIut tr  -

( 36’)

vh.e was defined in (4) We assum. that the upper and tower bounds and

th. total powers of the signal and noise processes are knowu, with Mtiu.v) and

bounded.

I
-~~ ---- • — -~~ -~~~. - ~~~~~~~ —~~~-— -

- -- - - 
- - - ‘A
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The most robust filter H~ (u,v) is defined as in (5), hut now we require

the minimization of the MSF. rather than m ax i m i z a t i o n  of SNR . If H~ (u,v’) is

the optimum filter for a pair of least favorable PSI)’. S~cD , N~cD . then H~ (u~v)

must satisfy

e(S~N; H~) ~ 
e(S~.N~ ;H~) ‘ e(S~ ,N~ ;H) (37)

for any pair (S,N) In D~~I) and any linear filter H(u,v). The filter H~(u,v)

and the least favorable pair S~ (u~v). N~(u ,v) will form a saddle—point for

the MSE.

The main result is the following theorem:

Theorem 2. For the classes I) and U , the most robust Wiener filter H (u ,v)a n R
exists. It is the optimum filter for the pair of least favorabl e  PSU ’s defined

accordi n g to the following :

k.N L (u ,v)

S~(u1v) — Su (u ,v) (u ,v) r1~~(k 5)

SL(u,v) (u,v)t ~i(k5) (38)

and

~~
SL(u ,v) (u ,v)~ i31(k)

N~(u ,v) — N
~
(u,v) (u,v)c82(k)

NL(u,v) (u,v)c ~(k)

when.

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  ~~— - -~~~



-
~~~~~~~~~~

-
~~~~~~~~

,-
~~~~~-—~

— 
~~~~~~~~

—
~~—

- - ---- ----
~~~ — ---—-~~ .- -- -—

- —---— -

— 1 5 —

• ((u ,v) I SL(u ,v) ‘- kN t
(u,v) 

~ 
S1~
(u,v)~

. ((u,v) I s
~
(u
~
v) ~j S~(u,v) ‘~ 

k,NL(u,
v))

~ (It ,) ~ ( (u ,v) I S
~
(u,v) 

~ 
kN L(u ,v))

81(k
~
) a {(u,v) I k.U N L (u ,v) 

~ 
S~ (u ,v) ‘- k N u (u , .’)t

‘ ((u,v) I knNL(u,v) 
~ 
k~N~(u,v)

I (ku ) ~ ((u ,v) I k0N1(u ,v) “ S1(u,v)} ‘ (40)

if solutions k5 < k~ exist to the power constraint equations

Ps
(s) 

k~ 
— ‘ (41.)

~~~~ k,~ 
- ‘ - (4ib)

where

PS(*) — (
~

) 2 ( f {  ~
NL(u ,v)dudv + L~(5) S11(u ,v) dudv

+ II S~ (u ,v)dudv 1 , (42a)

PH(S) — ~~ If ~ S~
(u ,v)dudv + Ii’ Nu(u.

v)dudv

+ if Nt (u ,v)dudv) (42b)

There are two parts to the proof of the theorem , one showing the robustness

of th. solutions and the other showing existence . The existence ptoof which

depends on finding a solution to (41) or other equations is similar to that *iver in

(10) and will be omitted, The robustness proof is simpler , and we will outl tne it here.

In order to show that th. above Solution satisfies the condition for robust-

ness, we must show (as in tiol) that

— e(S~~N~ ;H.,~) ~ 0 (43)

when H11(u ,v) is the opt imum f i l ter  for S~ (u~v) and 

- _ i_ 
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We can consider the two terms, signal and noise, in (33) separately.

Define

~~aignal (~
!.)2f1IS(u,v)_Sg(u ,v)fl l+S

h
,N

12 dudv

On ci1(k5), SR /N R k and , on B1
(k0), SR/M R — kh so that 1/ ( l+S~ /N~ ) ~ l/(1+k).

On ~2 (k 5) , (S_ S
n) is non—posi t i ve and SR/NR ~ k, so that l/(l+S~ /N~) � l/(1+k5)

and , on B2 (k~ )~ the integrand is non—negative and l/(1+SR/N R
) < l / (l +k,) .

Finally, on the rest of the (u,v) plane , SR/NR SL/NL~
ks and the integrand is

non—negative. Thus,

~
esjgnal ~ (~

!
~)
2(j.~~

_)2II(S(u,v)_SR(u,vfldudv. 
(45)

and from the power constraint we get

L~e 
< 0 4signal -

In a similar way,  the noise term can be shown to be non—positive and robustness

is proved.

Notice that although Theorem 2 asserts the existence of a least-favorable

pair of PSD’s, it only defines then for a particular case when the equations in

(41) have solutions with k,<k~. This also turns out usually to be the case.

Otherwise, the least—favorable densities can be obtained directly from the

detailed version of the theorem in [10 1 for the one—dimensional case .

Thu theorem specifies the least—favorable spectral densities as a pair of

spectral densities which tend to be as similar as possible , within the given

classes. This is apparent from (38) and (39), and is a reasonable solution

from intuitive considerations. In fact, it is possible to prove that in a gen—

•ralized sense of “distance” between two spectral densities, the solution of

Theorem 2 species the minimum distance pair (121.

_ _ _ _ _ _
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It •hould be noted that the result of Theorem 2 can also be applied to

another pair of classes and E for the signal and noise PSD’s, defined by

— (S(u ,v)IS(u,v) — (I—c )S
0
(u ,v) + * S ( u ,v) and

JfS0
(u,v)dudv — JfS (u ,v)dudv) (47)

and similarly for Here S0(u ,v) is a known nominal signal spectra l densit y ,

is an assumed degree of contamination allowed for S0(u,v), and S (u ,v) is an

otherwise arbitrary spectral density. With SL(u,v) • (l— ~~) S0(u ,v) and S
~
(u .v)

everywhere unbounded in (35). the class becomes the above F8. Numerical

results for such classes in the one—dimensional case given in tlo l show the

usefulness of these concepts of robust Wiener filtering.

V. CONCLUSION

A design philosophy for filtering signals in noise h~ts been presented ,

— applicable In cases where signal and noise charactortsttt-s cannot be modeled

precisely . The robust matched and Wiener filters have been derived for two—

dimensional discrete—time applications. Such filters can be useful in many two-

dimensional signal detection and estimation applications .
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Figure 1. Robust f i l ter and least—favorable characteristics considered in
Section III.
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